作者:
郭培林,陳金水,盧建剛(浙江大學(xué),浙江 杭州 310058)
戴柏炯(杭州朝陽橡膠有限公司,浙江 杭州 310018)
史敦禹(中策橡膠(建德)有限公司,浙江 建德 311607)
孫洪林(杭州中策清泉實(shí)業(yè)有限公司,浙江 杭州 314100)
摘要:輪胎是我國國民經(jīng)濟(jì)的重要支柱,利用X光機(jī)對輪胎進(jìn)行質(zhì)量檢測在整個(gè)輪胎生產(chǎn)過程中是極其重要的一道工序。目前國內(nèi)工廠普遍采用肉眼觀察輪胎X光圖像進(jìn)行識別,存在效率低下、人工成本高等一系列問題,因此采用計(jì)算機(jī)視覺技術(shù)進(jìn)行自動(dòng)識別是今后的發(fā)展方向。本文將目標(biāo)檢測算法Faster R-CNN應(yīng)用于輪胎質(zhì)檢,并加以改進(jìn):(1)在模型中融合FPN(Feature Pyramid Network,特征金字塔網(wǎng)絡(luò)),用以解決輪胎瑕疵尺度變化大的問題;(2)在算法中融合背景特征信息,對候選框進(jìn)行重排名,增加檢測模型最終的檢測精度。通過對某輪胎廠提供的輪胎X光圖像進(jìn)行瑕疵檢測對比表明,這些改進(jìn)措施提高了檢測模型的mAP(mean Average Precision)指標(biāo),具有良好的應(yīng)用前景。
關(guān)鍵詞:輪胎X光圖像;瑕疵檢測;深度學(xué)習(xí);背景特征
Abstract: The tire industry is an important part of China's nationale conomy. The use of X-ray machines for tie quality inspection is an extremely important process in the tire production process.At present, domestic factories generally use the naked eye to observe tire X-ray images for recognition. There are a series of problems such as low efficiency and high labor cost. Therefore,automatic identification by computer vision technology is the future development direction. In this paper, the Faster R-CNN is applied to tire quality inspection, and the following improvements are made: Firstly, FPN is integrated in the model to solve the problem of large changes in tire defect scale; secondly, the background feature information is integrated in the algorithm, the RoIs is re-ranked to increase the final detection accuracy of the detection model. The comparison of defect detection on the tire X-ray image shows that these improvement measures improve the mAP value of the detection model and have a good application prospect.
Key words: Tire X-ray image; Defect detection; Deep learning; Background feature
在線預(yù)覽:輪胎X光圖像瑕疵檢測Faster R-CNN算法改進(jìn)研究
摘自《自動(dòng)化博覽》2020年8月刊