国产欧美日韩精品a在线观看-国产欧美日韩精品一区二区三区-国产欧美日韩精品综合-国产欧美中文字幕-一区二区三区精品国产-一区二区三区精品国产欧美

ACS880-07C
關注中國自動化產業發展的先行者!
CAIAC 2025
2024
工業智能邊緣計算2024年會
2023年工業安全大會
OICT公益講堂
當前位置:首頁 >> 案例 >> 案例首頁

案例頻道

Distributed model predictive control for plant-wide hot-rolled strip laminar cooling process
  • 企業:控制網     領域:人機界面     行業:冶金    
  • 點擊數:1980     發布時間:2010-03-17 16:18:13
  • 分享到:
1. Introduction

     Recently, customers require increasingly better quality for hotrolled strip products, such as automotive companies expect to gain an advantage from thinner but still very strong types of steel sheeting which makes their vehicles more efficient and more environmentally compatible. In addition to the alloying elements, the cooling section is crucial for the quality of products [1]. Hot-rolled strip laminar cooling process (HSLC) is used to cool a strip from an initial temperature of roughly 820–920 C down to a coiling temperature of roughly 400–680 C, according to the steel grade and geometry. The mechanical properties of the corresponding strip are determined by the time–temperature-course (or cooling curve) when strip is cooled down on the run-out table [1,2]. The preciseand highly flexible control of the cooling curve in the cooling section is therefore extremely important.

        Most of the control methods (e.g. Smith predictor control [3],element tracking control [4], self-learning strategy [6] and adaptive control [5]) pursue the precision of coiling temperature and care less about the evolution of strip temperature. In these methods, the control problem is simplified so greatly that only the coiling temperature is controlled by the closed-loop part of the controller. However, it is necessary to regulate the whole evolution procedure of striptemperature if better properties of strip are required. This is a nonlinear, large-scale, MIMO, parameter distributed complicated system. Therefore, the problem is how to control the whole HSLC process online precisely with the size of
HSLC process and the computational efforts required.

         Model predictive control (MPC) is widely recognized as a practical control technology with high performance, where a control action sequence is obtained by solving, at each sampling instant, a finite horizon open-loop receding optimization problem and the first control action is applied to the process [7]. An attractive attribute of MPC technology is its ability to systematically account for process constraints. It has been successfully applied to many various linear [7–12], nonlinear [13–17] systems in the process industries and is becoming more widespread [7,10]. For large-scale and relatively fast systems, however, the on-line implementation of centralized MPC is impractical due to its excessive on-line computation demand. With the development of DCS, the field-bus technology and the communication network, centralized MPC has been gradually replaced by decentralized or distributed MPC in large-scale systems [21,22] and [24]. DMPC accounts for the interactions among subsystems. Each subsystem-based MPC in DMPC, in addition to determining the optimal current response, also generates a prediction of future subsystem behaviour. By suitably leveraging this prediction of future subsystem behaviour, the various subsystem-based MPCs can be integrated and therefore the overall system performance is improved. Thus the DMPC is a good method to control HSLC. 

        Some DMPC formulations are available in the literatures [18–25]. Among them, the methods described in [18,19] are proposed for a set of decoupled subsystems, and the methoddescribed in [18] is extended in [20] recently, which handles systems with weakly interacting subsystem dynamics. For arge-scale linear time-invariant (LTI) systems, a DMPC scheme is proposed in [21]. In the procedure of optimization of each subsystem-based MPC in this method, the states of other subsystems are approximated to the prediction of previous instant. To enhance the efficiency of DMPC solution, Li et al. developed an iterative algorithm for DMPC based on Nash optimality for large-scale LTI processes in [22]. The whole system will arrive at Nash equilibrium if the convergent condition of the algorithm is satisfied. Also, in [23], a DMPC method with guaranteed feasibility properties is presented. This method allows the practitioner to terminate the distributed MPC algorithm at the end of the sampling interval, even if convergence is not attained. However, as pointed out by the authors of [22–25], the performance of the DMPC framework is, in most cases, different from that of centralized MPC. In order to guarantee performance improvement and the appropriate communication burden among subsystems, an extended scheme based on a so called ‘‘neighbourhood optimization” is proposed in [24], in which the optimization objective of each subsystem-based MPC considers not only the performance of the local subsystem, but also those of its neighbours.

-------------Details please click to download http://www.miconline.com.cn/images/zhengyi.rar---------------

熱點新聞

推薦產品

x
  • 在線反饋
1.我有以下需求:



2.詳細的需求:
姓名:
單位:
電話:
郵件:
主站蜘蛛池模板: 精品欧美日韩一区二区三区| 欧美成人看片一区二区三区 | 一个人看的免费高清视频日本| 在线日韩视频| 日韩亚洲在线| 国产亚洲午夜精品a一区二区| 波多野结衣视频在线| 亚洲第一在线播放| 玖玖精品| 国产特黄特色一级特色大片| 成人18免费入口| 写真片福利视频在线播放| 日本高清在线不卡| 国产视频手机在线| 香港国产特级一级毛片| 久久精品一区二区影院| 国产成人精品一区二三区2022| 90岁老太婆一级毛片| 全球成人网| 国产精品免费视频一区一| 亚洲精品无码不卡| 精品国产一区二区三区在线| 999热成人精品国产免| 日本阿v视频在线观看高清| 岛国伊人| 欧美高清一级| 成人永久福利在线观看不卡| 三级黄色在线观看| 成年男女男精品免费视频网站| 欧美特级毛片aaaa| 高清成人爽a毛片免费网站| 四虎午夜剧场| 国产成人mv在线观看入口视频| 日本久久综合| 荡公乱妇蒂芙尼中文字幕| 亚洲成人中文| 国产成人精品一区| 久久久久久久久久免观看| 99在线观看精品视频| 美女视频黄视大全视频免费网址| 亚洲精品国产男人的天堂|