国产欧美日韩精品a在线观看-国产欧美日韩精品一区二区三区-国产欧美日韩精品综合-国产欧美中文字幕-一区二区三区精品国产-一区二区三区精品国产欧美

ACS880-07C
關注中國自動化產業發展的先行者!
CAIAC 2025
2024
工業智能邊緣計算2024年會
2023年工業安全大會
OICT公益講堂
當前位置:首頁 >> 案例 >> 案例首頁

案例頻道

Industrial Communication with Ethernet and Fieldbuses
  • 企業:控制網     領域:工業以太網     行業:其他    
  • 點擊數:2287     發布時間:2004-09-16 16:02:00
  • 分享到:

 

Martin Müller

 

        With its open protocol structures, its strengths in universal communication and its free choice of topology, Ethernet has long since established itself as the standard in office communication. In the field of industrial communications, on the other hand, various Fieldbuses have emerged to date as the defacto standard. This is largely due to geographical reasons or specific application requirements. In countless machines and systems worldwide, they serve to connect sensors and actuators with control technology. Ethernet is already used in the industry for communicating between various machines and subsystems. It is therefore natural and obvious that the industry should also be interested in using the global communication standard Ethernet for connecting sensors and actuators. However, this is not possible without modifying or adding to the standard Ethernet technology. The reasons for this include the complexity of the protocol, the processing power required in each simple device and the increased project efforts. As a result, various companies and organizations are working on Ethernet extensions, especially those that will enable real-time processing.

Fig.1  Fieldbus systems such as Interbus are currently the standard in industrial communications

 

Requirements on industrial communications

        In industrial automation solutions, communications systems must primarily transport I/O signals (bits) between the control unit, sensors and actuators. Other key tasks include the synchronization of drive systems and the transfer of safety-oriented signals. Security technology is currently being integrated into Fieldbus systems and is now being used in applications for the first time. For Ethernet, there is no open and standardized method to facilitate this. A further key requirement on industrial communications systems is vertical integration, in other words the universal and transparent linking of the factory domain with the office domain. Ethernet is currently being used chiefly in this context where it is clearly advantageous.

 

        In addition to the general requirements of industrial communications systems listed above, there are a few key criteria that an Ethernet-based communications system must meet before users will readily switch from the Fieldbus technology being used successfully at present to the Ethernet technology of the future.

First of all, an Ethernet-based communications system must satisfy real-time requirements in the sub-millisecond region. To facilitate this, a suitable protocol and possibly also special ASICS may be required that can also be integrated into simple devices. Various concepts exhibit tremendous differences, especially in this respect, since the existing Ethernet system is bent so far in places that interaction with standard components is no longer possible. So while excellent performance values are generally achieved with this solution, the demand for open, transparent communication is not met.

 

        In order to reduce the complexity of future automation solutions, modular control and functional units are required that operate autonomously in the overall system and communicate with each other via suitable networks. This makes it possible to optimally automate the mechanical modules that are generally already present and assemble machines from the various functional units. In terms of the communications system, an architecture is required where the distributed control intelligence can be connected and integrated. The various communications concepts may well make it possible to distribute control functions around the system, but only very few systems offer a true architecture for distributing intelligence.

Fig.2  Future communications systems must support distributed automation architectures

 

        To date, users have invested several billion dollars in systems and machines that are based on Fieldbus systems. According to a study carried out by Frost & Sullivan, Interbus alone represents an investment volume of more than 1 billion dollars. Hence there is a clear demand from users and manufacturers that new, Ethernet-based solutions allow seamless integration of Fieldbus systems. It is not sufficient to use simple gateways, at least not in the way they are normally used, since they would represent a change in the operating and diagnostic philosophy. Modern concepts provide for proxy structures in the communication architecture so that it is even possible to access data on Fieldbus devices without causing an interruption.

 

        Having access to the main control systems is just as important as the technical performance data of the communications system. In this regard, it is worth mentioning the market leaders Siemens, Rockwell and Schneider, but also PC-based control technology. In the context of Ethernet-based communication systems, it is frequently only PCs that are mentioned as a control system. This overlooks the fact that they currently hold a less than 10% share of the control market.

 

        A further key point in the evaluation of Ethernet-based communications systems for industrial use is whether they have a guaranteed future or not. Generally, it can be said that the more companies support a system and the larger market significance they gain, the more likely it is that the system will also still be available in ten or twenty years’ time wherein its technology is continuously developed.

 

        To summarize, it can be stated that the following represent key assessment criteria when evaluating Ethernet-based communications systems:

        (1)  Real-time communication

        (2)  Architecture for distributed automation

        (3)  Architecture for the integration of Fieldbuses

        (4)  Support for connectivity to all key control systems

        (5)  Guaranteed future

 

Decision in favor of the most comprehensive concept

        Profinet’s SRT (Soft-Real-Time) and IRT (Isochronous-Real-Time) concepts are designed for real-time communication and are graduated according to the needs of the various device classes. Simple I/O devices are handled with Profinet I/O in the conventional view of the local peripherals. Devices and systems with low real-time requirements can be operated easily and flexibly with SRT. In highly dynamic drive applications, IRT is the solution of choice when used in conjunction with suitable hardware support for the sub-millisecond applications with high synchronicity demands.

 

        For intelligence distribution, Profinet offers CBA (Component-Based-Architecture), a component-based architecture model that can be used to take control of even complex and distributed automation structures. Key aspects in this regard include the component model, which is based on the Windows technology DCOM, together with switching of the functional components via circuit editors, for example.

 

Fig.3  Distribution of update times with PROFInet

 

        With Profinet, Fieldbus systems are integrated via defined proxy structures so that devices and objects connected to the Fieldbus are seamlessly integrated into the Profinet concept.

 

        None of the market-leading control systems enjoy support from all of the major control suppliers. Profinet is currently supported by Siemens, Bosch, Phoenix Contact and other control suppliers and expressed in terms of market share, this represents the widest support among all the systems.

 

        As already mentioned in the context of the connection to control systems, the future of the Profinet concept is guaranteed thanks to support from market-leading firms. Profinet is not only supported by the Profibus user organization, but also by the Interbus Club, who represent two of the world’s leading organizations and systems in the Fieldbus sector.

 

        If one examines the evaluation criteria noted above and compares all of the Ethernet-based communications concepts that are currently under discussion, it is clear that Profinet represents the most comprehensive concept. Many other concepts try to score points with maximum performance in the real-time sector, although they sacrifice other key aspects such as the distribution of intelligence or the integration of Fieldbuses, or are only available for PC-based control system, The criteria mentioned formed the basis for Phoenix Contact’s decision to choose Profinet, and will also provide a future guarantee that this system will prosper on the worldwide market.

Fig.4  Switches, gateways and I/O products from the Factory Line family bring the Ethernet to the field

熱點新聞

推薦產品

x
  • 在線反饋
1.我有以下需求:



2.詳細的需求:
姓名:
單位:
電話:
郵件:
主站蜘蛛池模板: 欧美成 人h版在线观看 | 亚欧成人毛片一区二区三区四区 | 最新中文字幕乱码在线 | 91亚洲精品一区二区在线观看 | 亚洲人欧洲日韩 | 成年人在线免费观看网站 | 国产一二三区在线观看 | 国产精品资源在线 | 亚洲精品高清在线 | 99爱在线观看精品视频 | 久草网址 | 亚洲特黄视频 | 欧美午夜精品久久久久久黑人 | 亚洲精品国产一区二区图片欧美 | 久久久久久久久久免费视频 | 午夜日b视频 | 久久免费精品一区二区 | 亚洲第一中文 | 暖暖在线精品日本中文 | 成人午夜兔费观看网站 | 99在线免费 | 一级片视频免费观看 | 免费人成黄页网站在线观看国产 | 欧美老妇免费做爰视频 | 网站午夜 | 亚洲免费网站在线观看 | 精品一区二区三区波多野结衣 | 精品久久久视频 | 国产免费久久精品99re丫y | 国产黄a三级三级看三级 | 免看一级a一片成人123 | 国内外成人免费视频 | 性高湖久久久久久久久aaaaa | 亚洲网站视频在线观看 | 日韩精品亚洲专区在线观看 | 99精品视频免费在线观看 | a爱视频| 玖玖精品在线观看 | 成人永久免费视频网站在线观看 | 亚洲高清在线看 | 午夜三级国产精品理论三级 |