開關穩壓器由于尺寸、輸出靈活性和效率優勢,成為很多電源轉換電路的流行選擇。視運行條件的不同而不同,這類電源的轉換效率現在可以達到 98% 的水平。然而,盡管有這些優勢,這類電源必須在其他參數上做出妥協,其中最難的一個就是噪聲。
不過,什么是開關穩壓器的“噪聲”? 為了更好地理解這個術語,讓我們從開關模式電源產生寬帶諧波能量這一事實入手。這種人們不想要的能量以兩種形式出現,即輻射和傳導,在業界,它們通常被稱為“噪聲”。然而,這個名稱確實不夠準確,因為開關穩壓器的輸出“噪聲”根本就不是噪聲,而是直接與穩壓器的開關切換有關的、自然而然剩余的高頻分量。這種現象的正確叫法是電磁輻射,或者更常見的叫法是 EMI。而且,確實,EMI 有輻射和傳導兩種形式。
既然在很多電路應用中,要實現最佳性能,無噪聲、良好穩壓的電源非常重要,那么能夠降低在這種轉換過程必然存在的噪聲也就非常重要了。降低噪聲的一種顯然方式是使用線性穩壓器。然而,盡管線性穩壓器提供噪聲很低的電源軌,但是在高降壓比時,其轉換效率不佳,這在大輸出電流應用中,可能導致設計出現熱量問題。
相應地,開關穩壓器通常比線性穩壓器的轉換效率高,因此當最終應用需要大輸出電流時,開關穩壓器的熱量設計會更簡單。人們能夠很好地理解,在決定幾乎所有電源成敗時,組件選擇和電路板布局發揮了非常重要的作用。這些方面決定了運行時的 EMI 和熱量表現。對外行而言,開關電源布局也許看似魔法,但實際上,在設計初期,這常常是被忽視的一個基本方面。既然總是必須滿足運行時的 EMI 要求,那么對電源運行穩定性有好處的事,通常對降低 EMI 輻射也是有好處的。此外,從一開始就確定一個良好的布局,不會給設計增加任何成本,而且實際上,由于無需 EMI 濾波器、機械屏蔽、EMI 測試時間和無數次修改電路板,因此還有可能節省了成本。
另外,在一個設計中采用多個開關模式 DC/DC 穩壓器以產生多個軌時,如果這些穩壓器并聯,以均分電流并提供更大的輸出功率,那就有可能加重噪聲引起的潛在干擾問題。如果所有穩壓器都以一個相似的頻率運行 (切換),那么電路中多個穩壓器合起來產生的能量就有可能集中在一個頻率附近。這種能量的存在可能會成問題,尤其是如果印刷電路板 (PCB) 上其余 IC 以及其他系統電路板相互靠得很近而易于受到這種輻射能量影響時。在工業和汽車系統中,這尤其有可能造成麻煩,因為這類系統都是密集排列的,而且非??拷娫肼曉矗鐧C械切換的電感性負載、PWM 驅動功率輸出、微處理器時鐘和觸點切換。此外,如果以不同頻率切換,那么互調分量有可能混疊到敏感頻段中。
閱讀原文:EMI 很低的高壓充電泵.doc