(5) 有源共模電壓消除器(ACCom)
Y.Q.Xiang提出了有源共模電壓補(bǔ)償器(ACCom)用于降低PWM VSI驅(qū)動感應(yīng)電機(jī)系統(tǒng)中的軸電流,其結(jié)構(gòu)如圖15所示[23]。有源共模電壓補(bǔ)償器由單相多電平半橋逆變器(SPMHI)和四繞組共模變壓器組成。由于共模電壓是四電平開關(guān)電壓,可采用一多電平逆變器去產(chǎn)生方向相反的四電平電壓用于補(bǔ)償共模電壓,通過共模變壓器將這個補(bǔ)償電壓疊加到系統(tǒng)中。Y接電阻網(wǎng)絡(luò)用于檢測逆變器輸出。ACCom能完全消除共模電壓,同時由于基于電力半導(dǎo)體器件的開關(guān)操作,可降低損耗,適于高電壓應(yīng)用。 這種結(jié)構(gòu)的濾波器的變壓器原邊由具有6個開關(guān)器件組成的四電平半橋逆變器驅(qū)動,元件的數(shù)量和驅(qū)動這些元件的電路非常復(fù)雜,串聯(lián)電容的電壓平衡問題沒有解決。變壓器的原邊產(chǎn)生反向共模電壓,具有線性放大器的作用,因此可以產(chǎn)生很高的功率損耗,還需要有較大的變壓器勵磁電感,使變壓器的體積很大。 (6) 其他方法 為了消除共模電流,文獻(xiàn)[24]指出A. Consoli等研究采用公共直流母線多驅(qū)動工業(yè)系統(tǒng)中的共模電流消除技術(shù)。他提出了一個廉價(jià)的允許在由兩個或多個逆變器組成的多驅(qū)動系統(tǒng)中補(bǔ)償共模電壓變化的技術(shù)。該技術(shù)基于在兩個逆變器之間的適當(dāng)連接,采用新的PWM調(diào)制策略。這樣的調(diào)制策略在兩個逆變器中控制逆變器狀態(tài)序列使共模電壓同步變化。由于通過兩個RLC濾波器的連接,可以視為六線系統(tǒng),在兩個驅(qū)動系統(tǒng)中就可以獲得一個理論上的零共模電壓。 用零電壓開關(guān)方法抑制dv/dt[25] :目前的變頻器有采用硬開關(guān)電路,即功率開關(guān)器件在高電壓下導(dǎo)通,大電流下關(guān)斷,處于強(qiáng)迫開關(guān)過程。高電壓下導(dǎo)通是造成在功率器件導(dǎo)通瞬間產(chǎn)生高幅值dv/dt的直接原因。如果采用零電壓在導(dǎo)通,隨后輸出電壓平穩(wěn)上升,那么就不會產(chǎn)生電壓突變,dv/dt問題就會迎刃而解了。諧振軟性開關(guān)逆變電路的提出,解決了硬開關(guān)電路所造成的高幅值dv/dt問題的有效途徑。在諧振軟性開關(guān)電路中,功率開關(guān)器件是在零電壓條件下導(dǎo)通的,因此就不存在硬開關(guān)電路在高壓下強(qiáng)迫導(dǎo)通時產(chǎn)生的電壓突變,因此也就不存在高幅值dv/dt的問題。目前,諧振軟性開關(guān)逆變電路已經(jīng)用于低壓航空電源,在大功率范圍的實(shí)際應(yīng)用上,還存在著一些需要解決的問題。但是軟開關(guān)逆變器整體來說不能比硬開關(guān)逆變器提供出更好的優(yōu)勢,實(shí)驗(yàn)表明軟開關(guān)逆變器產(chǎn)生的軸電壓等于或大于硬開關(guān)逆變器產(chǎn)生的軸電壓。軟開關(guān)逆變器產(chǎn)生的軸承電流與硬開關(guān)逆變器產(chǎn)生的軸承電流相當(dāng),即軟開關(guān)逆變器不能從本質(zhì)上解決逆變器開關(guān)產(chǎn)生的軸承電流和軸電壓的問題。 4.4 軟件方法 上面的方法是在增加硬件的基礎(chǔ)上來降低共模電壓的,如采用四相逆變器、推挽射隨跟隨器、雙橋逆變器等。這些方法的缺點(diǎn)是逆變器的重量和體積增大了,控制系統(tǒng)復(fù)雜了,需要對所用的濾波器或變壓器參數(shù)進(jìn)行再設(shè)計(jì),這都降低了驅(qū)動系統(tǒng)的可靠性。近年來開始從控制策略上入手來研究這些問題。如文獻(xiàn)[26]在控制策略中采用PWM方式來降低共模電壓,但這種方法由于缺少零電壓分量容易產(chǎn)生較大的電流脈動,對調(diào)制比有很大的限制,從而限制了其在工業(yè)領(lǐng)域中的應(yīng)用。還有如文獻(xiàn)[27]在PWM升壓整流/逆變器中采用空間矢量PWM同步控制的方法來降低共模電壓,使共模電壓的幅值降到母線電壓的2/3。這種方法一是不能用到使用更為普遍的二極管整流/逆變器驅(qū)動系統(tǒng)中,二是由于共模電壓脈沖的數(shù)量減少,使電機(jī)漏電流的尖峰數(shù)減少,漏電流的有效值降低了,但漏電流的峰值可能沒有變化。文獻(xiàn)[28]對文獻(xiàn)[27]的不足提出了改進(jìn)的方法,這種方法可以在二極管整流/逆變器系統(tǒng)應(yīng)用。由于共模電壓脈沖的數(shù)量減少,使電機(jī)漏電流的尖峰數(shù)減少,盡管漏電流的峰值可能沒有變化,漏電流的有效值降低了。文獻(xiàn)[29]采用空間矢量方法控制逆變器的開關(guān)器件的通斷,文中提出新的調(diào)制策略,在采用三種逆變器狀態(tài)以維持共模電壓保持不變。這種策略可以有效降低共模電流,但對電機(jī)定子電壓的影響很大。
5 同時抑制差模dv/dt和共模電壓負(fù)面效應(yīng)的對策
針對上述濾波器結(jié)構(gòu)的不同之處,本文提出一種新穎的濾波器結(jié)構(gòu)如圖16所示。該濾波器具有兩個功能,即可以同時消除共模電壓和差模dv/dt,即LC構(gòu)成差模濾波器用于濾除差模dv/dt,CRL1-L2構(gòu)成共模濾波器消除共模電壓。由于這時變頻器和電容C之間存在差模電感,可以緩沖電容C在變頻器開關(guān)動作時產(chǎn)生尖峰電流對變頻器的沖擊作用,因此對電容C的數(shù)值選取不受限制,其取值以差模濾波為主。由圖16可見,電容C網(wǎng)絡(luò)有兩個功能:一個是與電感L一起組成差模dv/dt濾波器來降低差模dv/dt ;另一個是作為共模電壓檢測裝置并給共模變壓器提供驅(qū)動電流。 圖17(a)是電動機(jī)端差模電壓波形。由于存在100m長的電纜連接在逆變器和電動機(jī)中間,電動機(jī)端出現(xiàn)了電壓反射現(xiàn)象,電動機(jī)端的線電壓值幾乎加倍,這將使電動機(jī)的絕緣壽命縮短。當(dāng)在電動機(jī)和逆變器之間加上濾波器后,如圖17(b)所示,電動機(jī)端線電壓波形被濾成正弦波,由于電動機(jī)端的差模dv/dt幾乎完全消除,電壓反射現(xiàn)象不存在了,使電動機(jī)和變頻器之間的電纜長度不受限制了。同時這個結(jié)果也說明,所提濾波器中的共模變壓器對差模電壓沒有影響。圖17(c)為沒加入任何濾波器時,共模電壓由于較高的dv/dt也產(chǎn)生了電壓反射現(xiàn)象,它將產(chǎn)生較大的軸電壓和軸承電流從而使電動機(jī)軸承過早損壞。圖17(d)中,采用本文提出的濾波器時,共模dv/dt被明顯降低了,由此其負(fù)面效應(yīng)被有效抑制了。 因此,本文提出的濾波器結(jié)構(gòu)的特點(diǎn)是:可以同時消除變頻器輸出產(chǎn)生的負(fù)面效應(yīng),而且還能適應(yīng)載波頻率的變化,在不同的載波頻率下都可以得到滿意的諧波抑制效果,這些特點(diǎn)要比單獨(dú)抑制共模電壓或差模dv/dt的濾波器要好得多。 6 結(jié)論 本文首先分析了現(xiàn)代變頻器輸出產(chǎn)生的負(fù)面效應(yīng)的本質(zhì),然后對抑制負(fù)面效應(yīng)的各種對策進(jìn)行了評價(jià),在此基礎(chǔ)上,提出了一種新穎的可以同時消除共模電壓和差模dv/dt的新型濾波器,試驗(yàn)結(jié)論驗(yàn)證了這種濾波器的有效性。 參考文獻(xiàn): [1] David Leggate, Jeff Pankau, et al. Reflected waves and their associated current [J]. IEEE Trans. Industry Applications vol.35, no.6. November/ December 1999: 1383~1392 [2] Yoshihiro Murai, Takehiko Kubota, et al. Leakage Current Reduction for a High-frequency Carrier Inverter Feeding an Induction Machine [J]. IEEE Trans. Industry Applications, 1992, 28:858~863 [3] Jay M. Erdman, R. J. Kerkman, at el. Effect of PWM Inverters on AC Motor Bearing Currents and Shaft Voltages [J]. IEEE Trans. Industry Applications, vol.32, no.2, March/April, 1996: 250 -259 [4] Dudi A. Rendusara, Prasad N. Enjeti. An improved inverter output filter configuration reduces common and differential modes dv/dt at the motor terminals in PWM drive systems [J]. IEEE Trans. Power Electronics vol. 13, no. 6. November 1998: 1135~1143. [5] Annette von Jouanne, Dudi A. Rendusara, Prasad N. Enjeti. Filtering Techniques to Minimize the Effect of Long Motor Leads on PWM Inverter-fed AC Motor Drive Systems. IEEE Trans. on Industry Applications. 1996,32 (4):919~926 [6] G. Skibinski, R. Kerkman, D. Leggate, J. Pankau, D. Schlegel. Reflected Wave Modeling Techniques for PWM AC Motor Drives. IEEE APEC Proceedings, 1998: 1021~1029 [7] Annette von Jouanne. New Passive and Active Filtering Techniques for the Mitigation of Power System Harmonics and to Reduce the Effects of High Frequency PWM Switching on the Operation of AC Motor Drives, Ph.D., Dissertation, Texas A&M University, 1995 [8] Lawrence A. Saunders, Gary L. Skibinski Steve T. Evon, David L. Kempkes. Riding the Reflected wave: IGBT Drive Technology Demands New Motor and Cable Considerations. IEEE IAS-Petroleum & Chemical Industry Conference, Philadephia, 1996:75~84 [9] Noboru Aoki, Kenichi Satoh, Akira Nabae. Damping Circuit to Suppress Motor Terminal Overvoltage and Ringing in PWM Inverter-Fed AC Motor Drive Systems with Long Motor Leads. IEEE Trans. on Industry Applications. 1999,35(5): 1014~1020 [10] Paul T. Finlayson. Output Filter Considerations for PWM Drives with Induction Motors. IEEE Annual Textile, Fiber and Film Industry Technical Conference, 1996: 1~7 [11] Yilmaz Sozer, David A. Torrey, Suhan Reva. New Inverter Output Filter Topology for PWM Motor Drives. IEEE Trans. on Power Electronics. 2002, 15(6):1007~1017 [12] Annette Von Jouanne, Haoran, Zhang. An Evaluation of Mitigation Techniques for Bearing Currents, EMI and Over-oltages in ASD Applications. IEEE Trans. on Industry Applications. 1998, 34(5): 1113-1121 [13] Shaotang Chen, T. A. Lipo. Circulating Type Motor Bearing Current in Inverter Drives. IEEE Industry Applications Magazine. 1998, 4(1): 32?8 [14] Don Macdonald, Will Gray. PWM Drive Related Bearing Failures. IEEE Industry Applications Magazine. 1999, 5(4): 41-47 [15] Doyle F. Busse, Jay M. Erdman. An Evaluation of the Electrostatic Shielded Induction Motor: A Solution for Rotor Shaft Voltage Buildup and Bearing Current. IEEE Trans. on Industry Applications. 1997, 33(6): 1563?570 [16] Derek Chambers, Annette Von Jouanne. A Novel High Performance Resonant Converter ASD to Eliminate the Adverse Effects of PWM Operation. IEEE Industry Applications Magazine. 2001: 2033-2040 [17] Satoshi Ogasawara, Hirofumi Akagi. Modeling and Damping of High-Frequency Leakage Currents in PWM Inverter-Fed AC Motor Drive Systems. IEEE Trans. on Industry Applications.1996, 32(5): 1105-1114 [18] Mahesh Mysore Swamy, Kenji Yamada, Tsuneo Kume. Common Mode Current Attenuation Techniques for Use with PWM Drives. IEEE Trans. on Power Electronics. 2001, 16(2): 248-255 [19] Zhihong Ye, Dushan Boroyevich, Kun Xing, Fred C. Lee, Changrong Liu. Active Common-Mode Filter for Inverter Power Supplies with Unbalanced and Nonlinear Load. IEEE IAS Proceedings, Phoenix, AZ, USA. 1999: 1858 -1863 [20] Annette Von Jouanne, Haoran Zhang. A Dual-bridge Inverter Approach to Eliminating Common Mode Voltages and Bearing and Leakage Currents. IEEE Trans. on Power Electronics. 1999, 14(1): 43-48 [21] Satoshi Ogasawara, Hideki Ayano, Hirofumi Akagi. An Active Circuit for Cancellation of Common-Node Voltage Generated by a PWM Inverter. IEEE Trans. on Power Electronics. 1998, 13(5): 835-841 [22] Madhav D. Manjrekar, Thomas A. Lipo. An Auxiliary Zero State Synthesizer to Reduce Common Mode Voltage in Three-Phase Inverters. IEEE IAS Proceedings, Phoenix, AZ, USA. 1999: 54-59 [23] Y.Q.Xiang. A Novel Active Common-Mode-Voltage Compensator (ACCom) for Bearing Current Reduction of PWM VSI-Fed Induction Motors. IEEE APEC Proceedings, Anaheim, CA, USA. 1998: 1003-1009 [24] A. Consoli, M. Cacciato, F. Gennaro, G. Scarcella, A. Testa. Common Mode Current Elimination in Multi-Drive Industrial Systems. IEEE IAS Proceedings, Phoenix, AZ, USA. 1999: 1851-1857 [25] Subhashish Bhattacharya, Leopoldo Resta. Experiment- al Comparison of Motor Bearing Currents with PWM Hard-and Soft-Switched Voltage-Source Inverters. IEEE Trans. on Power Electronics.1999, 14(3): 552-562 [26] Y. S. Lai. New Random Inverter Control Technique for Common Mode Voltage Mitigation of Motor Drives. IEE Proceedings Electric Power Applications. 1999, 146(3): 289-96 [27] Hyeoun-Dong Lee, Seung-Ki Sul. A Common Mode Voltage Reduction in Boost Rectifier/Inverter System by Shifting Active Voltage Vector in a Control Period. IEEE Trans. on Power Electronics. 2000, 15 (6): 1094-1101 [28] Hyeoun-Dong Lee, Yo-Chan Son, Seung-Ki Sul. A New Space Vector Pulse-Width Modulation Strategy for Reducing Ground to Stator-Neutral Voltage in Inverter-Fed AC Motor Drives. IEEE APEC Proceedings, New Orleans, LA, USA. 2000: 918-923 [29] Mario Cacciato, Alfio Consoli, Giuseppe Scarcella, Antonio Testa. Reduction of Common-Mode Currents in PWM Inverter Motor Drives. IEEE Trans. on Industry Applications. 1999, 35 (2): 469-476