人類同疾病較量最有力的武器就是科學技術,人類戰勝大災大疫離不開科學發展和技術創新。疫情發生以來,全國科技戰線積極響應黨中央號召,有關部門組成科研攻關組,確定臨床救治和藥物、疫苗研發、檢測技術和產品、病毒病原學和流行病學、動物模型構建等五大主攻方向,組織跨學科、跨領域的科研團隊,科研、臨床、防控一線相互協同,產學研各方緊密配合,在很短的時間內就取得了積極進展,為疫情防控提供了有力科技支撐,這背后是我國近年來基礎科學的迅速發展。日前,我國基礎科學領域的2019年度十大進展發布,從中我們可以看到我國基礎研究的硬實力。
日前,有2600余名專家學者參與網上投票的2019年度中國科學十大進展揭曉:探測到月幔物質出露的初步證據、構架出面向人工通用智能的異構芯片、提出基于DNA檢測酶調控的自身免疫疾病治療方案、破解藻類水下光合作用的蛋白結構和功能、基于材料基因工程研制出高溫塊體金屬玻璃、闡明銪離子對提升鈣鈦礦太陽能電池壽命的機理、青藏高原發現丹尼索瓦人、實現對引力誘導量子退相干模型的衛星檢驗、揭示非洲豬瘟病毒結構及其組裝機制、首次觀測到三維量子霍爾效應等10項重大科學進展入選。
1.探測到月幔物質出露的初步證據
中國的嫦娥四號探測器最近成功著陸在月球背面SPA區域的馮·卡門撞擊坑內,并利用搭載的月球車——玉兔2號開展了巡視探測。中國科學院國家天文臺李春來研究組與合作者,報告了玉兔2號上配置的可見光和近紅外光譜儀(VNIS)的初步光譜探測結果,分析發現了低鈣(斜方)輝石和橄欖石的存在,這種礦物組合很可能代表了源于月幔的深部物質。進一步的地質背景分析表明,這些物質是由附近直徑72公里的芬森撞擊坑挖掘出來、并拋射到了嫦娥四號著陸地點的月幔物質。這一工作的意義在于揭示了月幔的物質組成,為月球早期巖漿洋研究提供了新的約束條件,加深了對月球內部形成及演化的認識。玉兔2號將繼續探索馮·卡門撞擊坑底部的這些物質,以了解它們的地質背景、起源和組成,為未來開展月球樣品采樣返回任務提供依據。
2.構架出面向人工通用智能的異構芯片
發展人工通用智能(AGI)的方法一般有兩種:以計算機科學為導向或以神經科學為導向,將兩者結合是目前公認的最佳發展AGI的路徑。由于它們的構想和編碼方案有著根本的不同,這兩種方法依賴于截然不同且互不兼容的計算平臺,構建一個二者集成的計算平臺非常困難,從而阻礙了AGI的發展。因此,發展一個能夠同時支持流行的基于計算機科學的人工神經網絡和受神經科學啟發的模型和算法的通用平臺非常重要。清華大學施路平研究組與合作者提出了一種天機芯片架構,它高效集成了上面的兩種方法,提供了一個異構集成的協同計算平臺。該芯片采用多核結構、可重構構件和流線型數據流的混合編碼方案,既能同時獨立支持基于計算機科學的機器學習算法和神經科學主導的算法以及神經科學中的多種編碼方案,還支持兩者的異構混合建模,提供新的解決方案。研究人員僅使用一個芯片,演示了無人駕駛自行車系統中通用算法和模型的同步處理,實現了實時目標檢測、跟蹤、語音控制、避障、過障和平衡控制。該項研究有望為更通用的硬件平臺發展鋪平道路并推動AGI的發展。
3.提出基于DNA檢測酶調控的自身免疫疾病治療方案
病毒的種類成千上萬,其感染特點和致病方式也是千變萬化,但是萬變不離其宗的是,當病毒入侵時,其自身的遺傳物質會不可避免地被帶入到宿主細胞中。機體針對這些外源遺傳物質(如DNA等)迅速做出反應,甚至不惜以傷及自身為代價,這是病毒感染導致致死性炎癥的主要原因。關于外源DNA誘發免疫反應的認識可以追溯到上百年之前,然而其背后的機理并不清楚。2013年,這一領域國際上取得了重要突破,科學家鑒定發現蛋白質cGAS(環鳥苷酸-腺苷酸合成酶)是胞內DNA病毒感受器。隨著cGAS被揭示,科學家發現在檢測病毒入侵以外,cGAS的異常激活也直接導致一類自身免疫疾病。因此,尋找有效控制cGAS活性的手段并探究其調控機理,對抵抗病毒感染及自身免疫疾病的治療都至關重要。軍事醫學研究院(國家生物醫學分析中心)張學敏和李濤研究組與合作者發現,乙酰化修飾是控制cGAS活性的關鍵分子事件,并揭示了其背后的調控規律。研究不但揭示了機體抗病毒感染的關鍵調控機制,還發現了有效的cGAS抑制劑,為AGS(艾卡迪綜合征)等自身免疫疾病提供了潛在治療策略。
4.破解藻類水下光合作用的蛋白結構和功能
中國科學院植物研究所沈建仁、匡廷云研究組報道了海洋硅藻——三角褐指藻FCP的高分辨率晶體結構,揭示了蛋白支架內的7個葉綠素a、2個葉綠素c、7個巖藻黃素以及可能的1個硅甲藻黃素的詳細結合位點,從而揭示了葉綠素a和c之間的高效能量傳遞途徑。該結構還顯示了巖藻黃素與葉綠素之間的緊密相互作用,使能量通過巖藻黃素高效地傳遞和淬滅。該研究團隊進一步與清華大學生命科學學院隋森芳研究組合作,解析了硅藻的光系統II(PSII)與FCPII超級復合體的分辨率為3.0埃的冷凍電鏡結構。該研究率先破解了硅藻、綠藻光合膜蛋白超分子結構和功能之謎,不僅對揭示自然界光合作用的光能高效轉化機理具有重要意義,也為人工模擬光合作用、指導設計新型作物、打造智能化植物工廠提供了新思路和新策略。
5.基于材料基因工程研制出高溫塊體金屬玻璃
中國科學院物理研究所柳延輝研究組與合作者基于材料基因工程理念開發了具有高效性、無損性、易推廣等特點的高通量實驗方法,設計了一種Ir-Ni-Ta-(B)合金體系,獲得了高溫塊體金屬玻璃,其玻璃轉變溫度高達1162K。新研制的金屬玻璃在高溫下具有極高強度,1000K時的強度高達3.7千兆帕,遠遠超出此前報道的塊體金屬玻璃和傳統的高溫合金。該金屬玻璃的過冷液相區達136K,寬于此前報道的大多數金屬玻璃,其形成能力可達到3毫米,并使其可通過熱塑成形獲得在高溫或惡劣環境中應用的小尺度部件。該研究開發的高通量實驗方法具有很強的實用性,顛覆了金屬玻璃領域60年來“炒菜式”的材料研發模式,證實了材料基因工程在新材料研發中的有效性和高效率,為解決金屬玻璃新材料高效探索的難題開辟了新的途徑,也為新型高溫、高性能合金材料的設計提供了新的思路。
6.闡明銪離子對提升鈣鈦礦太陽能電池壽命的機理
鈣鈦礦太陽能電池是廣受關注的新一代光伏技術,而其工作穩定性是目前產業化的主要障礙。傳統研究主要通過組分優化、封裝、界面改性和紫外光過濾等來有效抑制如氧氣、水分和紫外光等因素導致的性能下降,從而提升器件的穩定性。然而要進一步提高器件的壽命,需要發展一種長期有效的方法以抑制使役過程中材料的本征缺陷。為提高本征穩定性,北京大學工學院周歡萍研究組、化學與分子工程學院嚴純華/孫聆東研究組及其合作者提出,通過在鈣鈦礦活性層中引入銪離子對(Eu3+/Eu2+)作為“氧化還原梭”,可同時消除Pb0和I0缺陷,進而大幅提升器件使用壽命。有趣的是,該離子對在器件使用過程中沒有明顯消耗,對應的器件的效率最高達到了21.52%(認證值為20.52%),并且沒有明顯的遲滯現象。同時,引入銪離子對的薄膜器件表現出優異的熱穩定性和光穩定性,在連續太陽光照或85℃加熱1000小時后,器件仍可分別保持原有效率的91%和89%;在最大功率點連續工作500小時后保持原有效率的91%。該方法解決了鉛鹵鈣鈦礦太陽能電池中限制其穩定性的一個重要的本質性因素,可以推廣至其他鈣鈦礦光電器件,對于其他面臨類似問題的無機半導體器件也具有參考意義。
7.青藏高原發現丹尼索瓦人
中國科學院青藏高原研究所陳發虎研究組、蘭州大學張東菊研究組聯合德國馬普學會進化人類學研究所Jean-Jacques Hublin研究組等合作者,報道了一個利用古蛋白質分析方法鑒定為丹尼索瓦人的下頜骨,該下頜骨來自于中國甘肅省夏河縣的白石崖溶洞。研究人員通過對化石上附著的碳酸鹽結核進行鈾系法測年,確定下頜骨至少有16萬年的歷史。該化石標本是丹尼索瓦洞以外發現的首件丹尼索瓦人化石證據,對標本的全面分析也為丹尼索瓦人研究提供了豐富的體質形態學信息,包括下頜和牙齒形態等信息。該項研究表明,早在現代智人到來之前,丹尼索瓦人在中更新世晚期就已經生活在青藏高原高海拔地區,并成功地適應了高寒缺氧環境。
8.實現對引力誘導量子退相干模型的衛星檢驗
量子力學和廣義相對論是現代物理學的兩大支柱。然而,任何試圖將量子力學和廣義相對論進行融合的理論工作都遇到極大困難。目前關于如何融合量子力學和引力理論的討論,模型眾多,但都普遍缺乏實驗檢驗。中國科學技術大學潘建偉及其同事彭承志、范靖云等與合作者,利用“墨子號”量子科學實驗衛星,在國際上率先在太空中開展了引力誘導量子糾纏退相干的實驗檢驗,對穿越地球引力場的量子糾纏光子退相干情況進行測試。根據“事件形式”理論模型預言,糾纏光子對在地球引力場中的傳播,其關聯性會概率性地損失;而依據現有的量子力學理論,所有糾纏光子對將保持糾纏特性。最終,衛星實驗檢驗結果并不支持“事件形式”理論模型的預測,而與標準量子理論一致。這是國際上首次利用量子衛星在地球引力場中對嘗試融合量子力學與廣義相對論的理論進行實驗檢驗,將極大地推動相關物理學基礎理論和實驗研究。
9.揭示非洲豬瘟病毒結構及其組裝機制
非洲豬瘟病毒(ASFV)是一個巨大而復雜的DNA病毒,能夠引發家豬、野豬患急性、熱性、高度傳染性疾病,發病率和死亡率可高達100%,對生豬養殖產業鏈造成巨大經濟損失,目前尚未有可用的疫苗。中國科學院生物物理研究所饒子和/王祥喜團隊和中國農業科學院哈爾濱獸醫研究所步志高團隊聯合上海科技大學等單位,在上海科技大學冷凍電鏡中心連續收集了高質量數據,采用一種優化的圖像重構策略,解析了非洲豬瘟病毒衣殼的三維結構,其分辨率達到4.1埃。結構細節揭示了衣殼穩定性和組裝的分子基礎,對非洲豬瘟疫苗的研發具有十分重要的理論指導意義。
10.首次觀測到三維量子霍爾效應
南方科技大學物理學系張立源研究組、中國科學技術大學物理學系喬振華研究組及新加坡科技設計大學楊聲遠等合作,在塊體碲化鋯(ZrTe5)晶體中首次實驗實現了“三維量子霍爾效應”。研究人員對碲化鋯體單晶進行了磁場下的低溫電子輸運測量,在一個相對低的磁場下達到了極端量子極限狀態(只有最低朗道能級被占據的)。在該狀態下,研究人員觀測到了一個接近于零的無耗散縱向電阻,并沿著磁場方向形成了一個正比于半個費米波長的很好的霍爾電阻平臺,這些是三維霍爾效應出現的確鑿標志。理論分析還表明,該效應源于在極端量子極限下電子關聯增強產生的電荷密度波驅動的費米面失穩。通過進一步提高磁場強度,縱向電阻和霍爾電阻都急劇增加,呈現出金屬-絕緣體相變。該研究進展提供了三維量子霍爾效應的實驗證據,并提供了一個進一步探索三維電子體系中奇異量子相及其相變的很有前景的平臺。
來源:《光明日報》