国产欧美日韩精品a在线观看-国产欧美日韩精品一区二区三区-国产欧美日韩精品综合-国产欧美中文字幕-一区二区三区精品国产-一区二区三区精品国产欧美

ACS880-07C
關(guān)注中國(guó)自動(dòng)化產(chǎn)業(yè)發(fā)展的先行者!
CAIAC 2025
2024
工業(yè)智能邊緣計(jì)算2024年會(huì)
2023年工業(yè)安全大會(huì)
OICT公益講堂
當(dāng)前位置:首頁(yè) >> 資訊 >> 企業(yè)資訊

資訊頻道

TwinCAT Machine Learning Creator:助力實(shí)現(xiàn)針對(duì)工業(yè)應(yīng)用的 AI 大模型的全自動(dòng)訓(xùn)練
人工智能(AI)是一項(xiàng)極具普適性的技術(shù),同時(shí)也是一項(xiàng)能夠成功實(shí)現(xiàn)自動(dòng)化工作流程的技術(shù)。它能夠突破迄今為止基于傳統(tǒng)算法所能實(shí)現(xiàn)的自動(dòng)化極限。然而,AI 在工業(yè)應(yīng)用領(lǐng)域的優(yōu)勢(shì),唯有在無需深厚的 AI 專業(yè)知識(shí)便能輕松駕馭之時(shí),方能得以充分展現(xiàn)與確立。這正是倍福開發(fā) TwinCAT Machine Learning Creator 軟件的初衷。

人工智能(AI)是一項(xiàng)極具普適性的技術(shù),同時(shí)也是一項(xiàng)能夠成功實(shí)現(xiàn)自動(dòng)化工作流程的技術(shù)。它能夠突破迄今為止基于傳統(tǒng)算法所能實(shí)現(xiàn)的自動(dòng)化極限。然而,AI 在工業(yè)應(yīng)用領(lǐng)域的優(yōu)勢(shì),唯有在無需深厚的 AI 專業(yè)知識(shí)便能輕松駕馭之時(shí),方能得以充分展現(xiàn)與確立。這正是倍福開發(fā) TwinCAT Machine Learning Creator 軟件的初衷。


17233668501.png


基于算法的傳統(tǒng)自動(dòng)化體系依賴于一種相當(dāng)僵化的結(jié)構(gòu),其運(yùn)作方式近乎于遵循一套既定的規(guī)則集合。當(dāng)情況 A 發(fā)生時(shí),則會(huì)通過 B 進(jìn)行回應(yīng),以獲得所期望的結(jié)果 C。簡(jiǎn)而言之,從特定情境到預(yù)期結(jié)果的路徑是預(yù)先設(shè)想好的,然后精準(zhǔn)實(shí)施。而基于 AI 的方法則巧妙地運(yùn)用實(shí)例數(shù)據(jù),自動(dòng)完成從特定情景到預(yù)期結(jié)果的學(xué)習(xí)路徑,因此無需人類明確構(gòu)思并轉(zhuǎn)化為算法。


AI 技術(shù)在工業(yè)領(lǐng)域有眾多潛在應(yīng)用,其中最前沿的莫過于 AI 機(jī)器視覺檢測(cè)。具體應(yīng)用包括成品生產(chǎn)線末端檢測(cè)、依據(jù)產(chǎn)品質(zhì)量或其它屬性精準(zhǔn)分揀產(chǎn)品(通常是天然產(chǎn)品),以及光學(xué)過程監(jiān)測(cè)和分類。這一廣泛應(yīng)用領(lǐng)域的具體實(shí)例包括但不限于:


·   對(duì)金屬體的形狀和/或表面質(zhì)量進(jìn)行最終檢驗(yàn)

·   按照不同的質(zhì)量等級(jí)分揀水果、木質(zhì)表面和羊毛等天然產(chǎn)品

·   垃圾分類回收

·   監(jiān)控加工區(qū)域,例如激光焊接過程監(jiān)控

·   處理視覺定位任務(wù),比如特定物體定位和抓取任務(wù)


基于 AI 的方法在處理這些任務(wù)時(shí)的顯著優(yōu)勢(shì)在于,一旦經(jīng)過適當(dāng)?shù)挠?xùn)練,通過學(xué)習(xí)得出的算法便能展現(xiàn)出出色的適應(yīng)性,輕松應(yīng)對(duì)輸入數(shù)據(jù)的變化。這意味著,即使在其有限的能力范圍內(nèi),經(jīng)過充分訓(xùn)練的 AI 模型也能有效有效應(yīng)對(duì)并妥善解決這些陌生情境的挑戰(zhàn)。


鑒于 AI 技術(shù)在工業(yè)領(lǐng)域所展現(xiàn)出的巨大潛力,工業(yè)企業(yè)目前所面臨的核心難題在于缺乏一批能夠高效、批量地創(chuàng)建 AI 模型的專業(yè)技術(shù)人才。在當(dāng)前競(jìng)爭(zhēng)激烈的就業(yè)市場(chǎng)中,對(duì) AI 專家的需求遠(yuǎn)遠(yuǎn)超出了實(shí)際的人才供給。更為關(guān)鍵的是,AI 專家只有與自動(dòng)化或過程控制專家合作,才能成功解決自動(dòng)化難題。這正是倍福的用武之地:TwinCAT Machine Learning Creator 能夠自動(dòng)執(zhí)行復(fù)雜的 AI 訓(xùn)練流程,使得自動(dòng)化與過程控制專家能夠自主創(chuàng)建 AI 模型。這極大地拓寬了這項(xiàng)技術(shù)的潛力,使其能夠惠及每一個(gè)人。


17233669731.png

上傳圖像分類數(shù)據(jù)集,將雞蛋分為“合格”、“臟污”、和“破損”三個(gè)等級(jí)


1  倍福 AI 生態(tài)系統(tǒng)

倍福為工業(yè) AI 應(yīng)用精心構(gòu)建了一個(gè)全面的生態(tài)系統(tǒng),其核心優(yōu)勢(shì)在于能夠直接在工業(yè)控制器(PLC)上高效執(zhí)行 AI 模型。各種傳感器都可通過 EtherCAT 現(xiàn)場(chǎng)總線以及配套的 EtherCAT 網(wǎng)絡(luò)設(shè)備連接至控制系統(tǒng)。此外,倍福還能提供各種系統(tǒng)集成式機(jī)器視覺硬件,包括堅(jiān)固耐用的工業(yè)相機(jī)、高性能的工業(yè)級(jí)鏡頭以及光源。傳感器信息被即時(shí)傳輸至基于 PC 的控制器,在那里可以直接處理這些信息,包括運(yùn)用 AI 技術(shù)進(jìn)行深度分析。TwinCAT Machine Learning Server、TwinCAT Vision Neural Networks 和 TwinCAT Neural Network Inference Engine 等集成了 PLC 的執(zhí)行模塊可用于訓(xùn)練好的 AI 模型。它們既能夠充分利用 CPU 的計(jì)算資源,也能夠靈活運(yùn)用 NVIDIA GPU 的算力。AI 執(zhí)行模塊可以加載存儲(chǔ)在開放標(biāo)準(zhǔn)“ONNX”中的訓(xùn)練好的 AI 模型。這樣,用戶便可以自由地在任何適合的訓(xùn)練環(huán)境中靈活訓(xùn)練 AI 模型,然后在 TwinCAT 控制器中輕松執(zhí)行這些模型。倍福通過其 C6043 超緊湊型工業(yè) PC,為用戶提供了集成 NVIDIA 嵌入式 GPU 并符合行業(yè)標(biāo)準(zhǔn)的可擴(kuò)展硬件解決方案,從而使得整個(gè)倍福生態(tài)系統(tǒng)能夠以優(yōu)化的方式將 AI 模型無縫集成到設(shè)備的控制層中。


2    自動(dòng)創(chuàng)建 AI 模型

倍福秉承開放式控制技術(shù)理念,設(shè)計(jì)了現(xiàn)有的 PLC 集成式執(zhí)行模塊,以支持 ONNX 標(biāo)準(zhǔn),從而實(shí)現(xiàn)了 AI 模型與 AI 訓(xùn)練環(huán)境的無縫對(duì)接,無論用戶使用的是何種訓(xùn)練環(huán)境。ONNX 文件將一個(gè)訓(xùn)練好的 AI 模型描述為帶相關(guān)參數(shù)的算子序列。這些描述文件能夠輕松加載到 TwinCAT Machine Learning Server 等 TwinCAT 3 功能組件中,然后由 PLC 執(zhí)行;但是,諸如 PyTorch 或 Scikit-learn 等通常用于訓(xùn)練 AI 模型的機(jī)器學(xué)習(xí)框架主要面向 AI 專家,他們通常會(huì)在 Python 編程環(huán)境中精心準(zhǔn)備訓(xùn)練數(shù)據(jù),創(chuàng)建 AI 模型架構(gòu),并深入進(jìn)行模型訓(xùn)練。


17233669871.png

訓(xùn)練 AI 模型


倍?,F(xiàn)在通過 TwinCAT Machine Learning Creator,提供了一種更為簡(jiǎn)單的方法,即借助基于 Web 的界面引導(dǎo)用戶輕松完成數(shù)據(jù)上傳、模型訓(xùn)練、模型分析和模型下載等全流程。我們的目標(biāo)群體主要包括自動(dòng)化和過程控制專家,即使他們不具備數(shù)據(jù)科學(xué)背景,也能通過我們的平臺(tái)實(shí)現(xiàn) AI 模型訓(xùn)練過程的標(biāo)準(zhǔn)化。


3    數(shù)據(jù)上傳

機(jī)器學(xué)習(xí)的整個(gè)概念都圍繞著通過實(shí)例數(shù)據(jù)來學(xué)習(xí)。考慮到這一點(diǎn),擁有一個(gè)干凈且具有代表性的數(shù)據(jù)集對(duì)于學(xué)習(xí)任務(wù)來說至關(guān)重要。這通常需要一個(gè)已標(biāo)注的數(shù)據(jù)集:以圖像分類領(lǐng)域?yàn)槔?,這意味著一定數(shù)量的樣本圖像已經(jīng)過人工分類處理。因此,每張圖像都被打上了標(biāo)簽,代表所期望的結(jié)果。圖像和標(biāo)簽之間的關(guān)系通過標(biāo)簽文件建立,在最簡(jiǎn)單的情況下,標(biāo)簽文件是一個(gè)包含文件名和相應(yīng)標(biāo)簽的表格。


數(shù)據(jù)上傳方式是開放的,支持多種圖像數(shù)據(jù)格式和標(biāo)簽文件格式。這意味著用戶可以自由選擇標(biāo)簽工具(如果需要的話)。我們目前正在將 TwinCAT Analytics Data Scout 用作標(biāo)簽工具,以實(shí)現(xiàn)從 TwinCAT 控制器到 TwinCAT Machine Learning Creator 的高效數(shù)據(jù)集成。


4    AI 模型訓(xùn)練

AI 訓(xùn)練流程的配置保持精簡(jiǎn),其核心步驟包括創(chuàng)建一個(gè)模型名稱,并將數(shù)據(jù)集(或多個(gè)數(shù)據(jù)集)添加到訓(xùn)練過程中。除了核心配置之外,所有其它配置均為可選配置,用戶可根據(jù)實(shí)際應(yīng)用需求靈活調(diào)整,以精確控制 AI 模型在 TwinCAT 控制器上的運(yùn)行行為。如果明確了采用倍福的 TwinCAT 硬件平臺(tái)和 TwinCAT 軟件創(chuàng)建 AI 模型,用戶就可以設(shè)定 AI 模型最大可接受的執(zhí)行時(shí)間閾值。我們?cè)趧?chuàng)建 AI 模型的過程中會(huì)考慮到這些關(guān)鍵信息。如果未明確設(shè)定最大執(zhí)行時(shí)間,系統(tǒng)則會(huì)完全專注于優(yōu)化 AI 模型的性能(泛化能力)。


5     模型分析

AI 模型,尤其是使用 TwinCAT Machine Learning Creator 創(chuàng)建的深度神經(jīng)網(wǎng)絡(luò)(深度學(xué)習(xí)模型),具有良好的泛化特性。這表示模型的預(yù)期性能也非常出色;然而,神經(jīng)網(wǎng)絡(luò)本質(zhì)上是一個(gè)“黑盒子”,其功能性只能通過專門的分析技術(shù),而非簡(jiǎn)單直接的方法來破解。這些方法也被稱為“可解釋性 AI”。


訓(xùn)練好的 AI 模型的分析方法呈現(xiàn)出多元化的特點(diǎn)。軟件會(huì)自動(dòng)將上傳的數(shù)據(jù)集進(jìn)行智能劃分,一部分被指定為訓(xùn)練數(shù)據(jù),用于訓(xùn)練模型;另一部分則作為測(cè)試數(shù)據(jù),用于模型分析。測(cè)試數(shù)據(jù)集包含了 AI 模型未曾見過的實(shí)例數(shù)據(jù),即未知實(shí)例,但這些實(shí)例已經(jīng)被打標(biāo)。這樣就可以精確地計(jì)算出統(tǒng)計(jì)值,直觀地顯示模型的正確率和錯(cuò)誤率。在模型的每一次執(zhí)行期間,系統(tǒng)還會(huì)計(jì)算出相應(yīng)的置信度值,并以統(tǒng)計(jì)數(shù)據(jù)的形式呈現(xiàn)。在模型每次執(zhí)行過程中,系統(tǒng)甚至還可以智能地生成一個(gè)顯著圖,該圖疊加在原始輸入圖像上,用以指示在進(jìn)行圖像分類時(shí)需要重點(diǎn)關(guān)注哪些圖像區(qū)域。


17233670211.png

分析 AI 模型


6    模型下載

一旦 AI 模型經(jīng)過訓(xùn)練并達(dá)到集成至設(shè)備控制系統(tǒng)的標(biāo)準(zhǔn),即可作為 ONNX 文件從平臺(tái)下載。這意味著 AI 模型并不局限于在 TwinCAT 環(huán)境,而是能夠根據(jù)需要在任何平臺(tái)上頻繁部署。此外,完整的 TwinCAT PLC 代碼也可以以 PLCopen XML 格式從平臺(tái)下載,包括圖像獲取、圖像預(yù)處理以及 AI 模型執(zhí)行和后處理的完整流程。訓(xùn)練工具相應(yīng)地?zé)o縫過渡到 TwinCAT PLC。


從訓(xùn)練平臺(tái)導(dǎo)出 ONNX 文件的另一大優(yōu)勢(shì)在于,它極大地促進(jìn)了 AI 專家的參與。這些專家能夠借助 TwinCAT Machine Learning Creator 快速且標(biāo)準(zhǔn)化地構(gòu)建出高質(zhì)量的初始 AI 模型。然后,用戶可以將 ONNX 格式的結(jié)果導(dǎo)入到各個(gè)專業(yè)工具中繼續(xù)處理,例如對(duì)模型進(jìn)行額外的分析或精細(xì)化調(diào)整。


17233670401.png

下載訓(xùn)練好的 AI 模型 


7    功能特點(diǎn)和優(yōu)勢(shì)

TwinCAT Machine Learning Creator 具備以下特性:


·    通過 TwinCAT 中的無代碼平臺(tái)輕松創(chuàng)建 AI 模型

·    AI 模型已經(jīng)針對(duì)實(shí)時(shí)應(yīng)用進(jìn)行了延遲調(diào)優(yōu)

·    充分利用了開放的標(biāo)準(zhǔn)、接口以及 AI 的最佳實(shí)踐

·    提供訓(xùn)練好的 ONNX 格式的最終模型

·    在整個(gè) AI 模型的開發(fā)、測(cè)試和驗(yàn)證過程中提供高透明度

·    支持企業(yè)內(nèi)部的 AI 模型標(biāo)準(zhǔn)化工作,推動(dòng)模型的進(jìn)一步開發(fā)

·    特別適合用于基于圖像處理的質(zhì)檢領(lǐng)域


自動(dòng)化的 AI 模型創(chuàng)建將帶來以下應(yīng)用優(yōu)勢(shì):


·    幫助所有企業(yè)釋放 AI 潛力

·    包括小微企業(yè)在內(nèi)的所有企業(yè)都可以利用 AI 技術(shù)提高競(jìng)爭(zhēng)優(yōu)勢(shì)

·    解決高技能人才日益短缺的難題

·    極大地簡(jiǎn)化 AI 專家的工作,最大限度地減少出錯(cuò)可能性

·    所需的專用程序數(shù)據(jù)可以得到妥善保護(hù),所有數(shù)據(jù)都會(huì)保留在企業(yè)內(nèi)

·    加快項(xiàng)目開發(fā)進(jìn)程,幫助企業(yè)更快地實(shí)現(xiàn)投資回報(bào)


熱點(diǎn)新聞

推薦產(chǎn)品

x
  • 在線反饋
1.我有以下需求:



2.詳細(xì)的需求:
姓名:
單位:
電話:
郵件:
主站蜘蛛池模板: 国产成人一区二区三区精品久久 | 欧美日韩视频精品一区二区 | 美国一级毛片片免费 | 欧美一级毛片激情 | 成人影院vs一区二区 | 特黄特级a级黄毛片免费观看多人 | 三级视频在线播放线观看 | 女人张开腿让男人操 | 日本成人在线视频网站 | 香港aa三级久久三级 | 日韩一级特黄 | 国产亚洲精品日韩已满十八 | a级网站在线观看 | 99爱视频 | 性欧美美国级毛片 | 色盈盈影院 | 521a久久九九久久精品 | 女初高中福利视频在线观看 | 免费岛国小视频在线观看 | 台湾久久 | 动漫一级毛片 | 成人免费视频日本 | 欧洲freexxxx性 | 99久久精品免费看国产高清 | 国内免费自拍视频 | 国产盗摄视频 | 国产永久高清免费动作片www | 国产毛片一区二区三区精品 | 在线欧洲成人免费视频 | 国内自拍第100页 | 男女乱淫真视频免费观看 | f性欧美| 另类综合视频 | 成人性一级视频在线观看 | 一区二区三区免费视频 www | 国产成人精品免费视频大全软件 | 成年人视频在线免费播放 | 欧美一级特黄特色大片免费 | 在线一区二区观看 | 国产老头与老太hd | 国产亚洲精品久久久久久无 |