孫長生(1954-)
男,安徽桐城人,碩士,高級工程師,先后從事火力發電廠熱工安裝、調試、小火電設計、運行機組熱工故障分析處理、熱工監督管理工作,主編和參編多部電力行業標準。目前主要從事熱工自動化技術應用研發和開發工作。
1 當前電力行業熱工自動化技術的發展
隨著世界高科技的飛速發展和我國機組容量的快速提高,電廠熱工自動化技術不斷地從相關學科中吸取最新成果而迅速發展和完善,近幾年更是日新月異,一方面作為機組主要控制系統的DCS,已在控制結構和控制范圍上發生了巨大的變化;另一方面隨著廠級監控和管理信息系統(SIS)、現場總線技術和基于現代控制理論的控制技術的應用,給熱工自動化系統注入了新的活力。
1.1 DCS的應用與發展
火電廠熱工自動化系統的發展變化,在二十世紀給人耳目一新的是DCS的應用,而當今則是DCS的應用范圍和功能的迅速擴展。
1.1.1 DCS應用范圍的迅速擴展
20世紀末,DCS在國內燃煤機組上應用時,其監控功能覆蓋范圍還僅限DAS、MCS、FSSS和SCS四項。即使在2004年發布的Q/DG1-K401-2004《火力發電廠分散控制系統(DCS)技術規范書》中,DCS應用的主要功能子系統仍然還是以上四項,但實際上近幾年DCS的應用范圍迅速擴展,除了一大批高參數、大容量、不同控制結構的燃煤火電機組(如浙江玉環電廠1000MW機組)的各個控制子系統全面應用外,脫硫系統、脫硝系統、空冷系統、大型循環流化床(CFB)鍋爐等新工藝上都成功應用。可以說只要工藝上能夠實現的系統,DCS都能實現對其進行可靠控制。
1.1.2 單元機組控制系統一體化的崛起
隨著一些電廠將電氣發變組和廠用電系統的控制(ECS)功能納入DCS的SCS控制功能范圍,ETS控制功能改由DCS模件構成,DEH與DCS的軟硬件合二為一,以及一些機組的煙氣濕法脫硫控制直接進入單元機組DCS控制的成功運行,標志著控制系統一體化,在DCS技術的發展推動下而走向成熟。
由于一體化減少了信號間的連接接口以及因接口及線路異常帶來的傳遞過程故障,減少了備品備件的品種和數量,降低了維護的工作量及費用,所以近幾年一體化控制系統在不同容量的新建機組中逐漸得到應用,如浙江華能玉環電廠4×1000MW機組、臺州電廠2×300MW機組和安徽鳳臺電廠4×600MW機組均全廠采用西屋Ovation系統,國華浙能寧海電廠4×600MW機組全廠采用西門子公司的T-XP系統,大唐烏沙山電廠4×600MW機組全廠采用I/A系統,浙江樂清電廠4×600MW機組全廠采用ABB公司的SYMPHONY系統等。
控制系統一體化的實現,是電力行業DCS應用功能快速發展的體現。排除人為因素外,控制系統一體化將為越來越多的電廠所采用。
1.1.3 DCS結構變化,應用技術得到快速發展
隨著電子技術的發展,近年來DCS系統在結構上發生變化。過去強調的是控制功能盡可能分散,由此帶來的是使用過多的控制器和接口間連接。但過多的控制器和接口間連接,不一定能提高系統運行可靠性,相反到有可能導致故障停機的概率增加。何況單元機組各個控制系統間的信號聯系千絲萬縷,互相牽連,一對控制器故障就可能導致機組停機,即使沒有直接導致停機,也會影響其它控制器因失去正確的信號而不能正常工作。因此隨著控制器功能與容量的成倍增加、更多安全措施(包括采用安全性控制器)、冗余技術的采用(有的DCS的核心部件CPU,采用2×2冗余方式)以及速度與可靠性的提高,目前DCS正在轉向適度集中,將相互聯系密切的多個控制系統和非常復雜的控制功能集中在一對控制器中,以及上述所說的單元機組采用一體化控制系統,正成為DCS應用技術發展的新方向,這不但減少了故障環節,還因內部信息交換方便和信息傳遞途徑的減少而提高了可靠性。
此外,隨著近幾年DCS應用技術的發展,如采用通用化的硬件平臺,獨立的應用軟件體系,標準化的通訊協議,PLC控制器的融入,FCS功能的實現,一鍵啟動技術的成功應用等,都為DCS增添了新的活力,功能進一步提高,應用范圍更加寬廣。
1.2 全廠輔控系統走向集中監控
一個火電廠有10多個輔助車間,國內過去通常都是由PLC和上位機構成各自的網絡,在各車間控制室內單獨控制,因此得配備大量的運行人員。為了提高外圍設備控制水平和勞動生產率,達到減員增效的目的,隨著DCS技術和網絡通訊功能的提高,目前各個輔助車間的控制已趨向適度集中,整合成一個輔控網(簡稱BOP 即Balance Of Plant的縮寫)方向發展,即將相互獨立的各個外圍輔助系統,利用計算機及網絡技術進行集成,在全廠IT系統上進行運行狀況監控,實現外圍控制少人值班或無人值班。
近幾年新建工程迅速向這個方向發展。如國華浙能寧海電廠一期工程(4×600MW)燃煤機組BOP覆蓋了水、煤、灰等共13個輔助車間子系統的監控,下設水、煤、灰三個監控點,集中監控點設在四機一控室里,打破了傳統的全廠輔助車間運行管理模式,不但比常規減員30%,還提升了全廠運行管理水平。整個輔控網的硬件和軟件的統一,減少了庫存備品備件及日常管理維護費用[1]。由于取消了多個就地控制室,使得基建費用和今后的維護費用都減少。一些老廠的輔助車間也在進行BOP改造,其中浙江省第一家完成改造的是嘉興發電廠2×300MW機組,取得較好效果。
1.3 變頻技術的普及應用與發展
變頻器作為控制系統的一個重要功率變換部件,以提供高性能變壓變頻可控的交流電源的特點,前些年在火電廠小型電機(如給粉機、凝泵)等控制上的應用,得到了迅猛的發展。由于變頻調速不但在調速范圍和精度,動態響應速度,低速轉動力矩,工作效率,方便使用方面表現出優越性,更重要的是節能效果在經濟及社會效益上產生的顯著效應,因此繼一些中小型電機上普遍應用后,近年來交流變頻調速技術,擴展到一些高壓電機的控制上試用,如送、引風機和給水泵電機轉速的控制等。
因為蘊藏著巨大的節能潛力,可以預見隨著高壓變頻器可靠性的提高、一次性投資降低和對電網的諧波干擾減少,更多機組的風機、水泵上的大電機會走向變頻調速控制,在一段時間內,變頻技術將繼續在火電廠節能工作中,扮演重要角色。
1.4 局部系統應用現場總線
自動化技術的發展,帶來新型自動化儀表的涌現,現場總線系統(FCS)是其中一種,它和DCS緊密結合,是提高控制信號傳輸的準確性、實時性、快速性和機組運行的安全可靠性,解決現場設備的現代化管理,以及降低工程投資等的一項先進的和有效的組合。目前在西方發達國家,現場總線已應用到各個行業,其中電力行業最典型的是德國尼德豪森電廠2×950MW機組的控制系統,采用的就是PROFIBUS現場總線。
我國政府從“九五”起,開始投資支持現場總線的開發,取得階段性成果,HART儀表、FF儀表開始生產。但電廠控制由于其高可靠性的要求,目前缺乏大型示范工程,缺乏現場總線對電廠的設計、安裝、調試、生產和管理等方面影響的研究,因此現場總線在電廠的應用仍處于探討摸索階段,近二年我國有十多個工程應用了現場總線,但都是在局部系統上,其中:
國華浙能寧海電廠,在單元機組的開、閉式水系統中的電動門控制采用Profibus DP總線技術,電動執行機構采用原裝進口德國歐瑪公司的一體化智能型產品Puma Matic,帶有雙通道Profibus-DP冗余總線接口作為DP從站掛在總線上。為了提高安全性可靠性,總線光纖、作為總線上的第一類DP主站的AP和相應的光電轉換裝置都采用了冗余結構,這是國內首家在過程控制中采用現場總線技術的火力發電廠。
華能玉環電廠的補給水處理系統和廢水系統[2],采用了二層通訊網絡結構的現場總線控制系統,其鏈路設備和主站級網絡采用冗余配置。控制系統人機終端與主控制器之間采用工業以太網通訊,以太網交換機采用ITP形式接口,四臺交換機構成光纖高速路網。現場設備層之間采用Profibus-DP現場總線通訊。主環網采用光纜,分支現場總線通訊選用總線電纜。配置二套冗余的主控制器,分別用于鍋爐補給水系統和廢水系統,且各自有兩條由光電耦合器組成的現場總線環形光纜網構成冗余配置,所有現場儀表和氣動閥門定位器(均采用帶PA總線接口),通過DP/PA耦合器連接到現場總線上。中低壓電器設備(MCC)采用具有現場總線通信接口功能的智能電機控制器。加藥泵的電動機采用帶總線的變頻器。鍋爐補給水的陰陽離子床氣動隔膜閥的電磁控制閥,采用具有總線接口的閥島來控制,閥島與現場總線連接。這是國內在局部過程控制中全面采用現場總線技術的首個火電廠,其應用實踐表明,輔控網全面采用現場總線技術已成熟。
1.5 熱工控制優化技術的應用發展
隨著過程生產領域對控制系統要求的不斷提高,傳統控制方法越來越難以滿足火電廠熱力流程對系統穩定性和性能最優化方面的要求,汽溫超標已經成為制約機組負荷變化響應能力和安全穩定運行的主要障礙之一(燃燒優化主要是鍋爐專業在進行,本文不作討論)。由此基于現代控制理論的一些現代控制系統逐步在火電廠過程控制領域中得到應用。如基于過程模型并在線動態求解優化問題的模型預測控制(簡稱MPC)法、讓自動裝置模擬人工操作的經驗和規律來實現復雜被控對象自動控制的模糊控制法、利用熟練操作員手動成功操作的經驗數據,在常規的串級PID調節系統的基礎上建立基于神經網絡技術的前饋控制作用等,在提高熱工控制系統(尤其是汽溫控制系統)品質過程中取得較好效果。如寧海發電廠使用的西門子公司PROFI系統,充分使用了基于模型的現代控制理論,其中汽溫控制原理示意圖如圖1所示。
圖1 機組汽溫控制原理示意圖 圖1中,用基于狀態空間算法的狀態觀測器解決汽溫這種大滯后對象的延遲造成的控制滯后,焓值變增益控制器解決蒸汽壓力的變化對溫度控制的影響,基于模型的Smith預估器對導前溫度的變化進行提前控制;通過自學習功能塊實時補償減溫水閥門特性的變化;而對再熱汽溫控制,盡量以煙道擋板作為調節手段,不采用或少采用減溫水作為控制手段,以提高機組效率;在機組協調控制模塊中,采用非最小化形式描述的離散卷積和模型,提高系統的魯棒性;根據控制品質的二次型性能指標連續對預測輸出進行優化計算,實時對模型失配、時變和干擾等引起的不確定性因素進行補償,提高系統的控制效果;PROFI投入后,AGC狀態下以2% Pe /min負荷率變化時的響應時間為57秒,壓力最大偏差0.208MPa,汽包水位變化最高和最低之差為-38.86mm,爐膛負壓變化曲線最高值和最低值差-145Pa,主蒸汽溫度偏差穩態基本控制在2℃以內,動態基本控制在5℃以內。
1.6 SIS系統的應用發展
SIS系統是實現電廠管理信息系統與各種分散控制系統之間數據交換、實時信息共享的橋梁,其功能包括廠級實時數據采集與監視,廠級性能計算與分析。在電網明確調度方式有非直調方式且應用軟件成熟的前提下,可以設置負荷調度分配功能。設備故障診斷功能、壽命管理功能、系統優化功能以及其它功能(根據電廠實際情況確定是否設置)[3]。自從國家電力公司電力規劃總院在2000年提出這一概念和規劃后,至今估計有200家多電廠建立了SIS系統,可謂發展相當迅速。
但是自從SIS系統投運以來,其所起的作用只是數據的采集、存儲、顯示和可打印各類生產報表,能夠真正把SIS的應用功能盡情發揮出來的很少,其面向統計/生產管理的數據分析工具,基于熱經濟性分析的運行優化,以品質經濟性為目標的控制優化,以提高可靠性為目的的設備故障診斷等功能基本多數都未能付緒實施。其原因主要有設計不夠完善,多數SIS廠家并沒有完全吃透專業性極強的后臺程序及算法,使其在生產實際中未能發揮作用,加上與現場生產脫節,因此SIS代理商所能做的只是利用網絡技術,邊搭建一個基本的SIS 架構邊進行摸索。此外SIS應涵蓋哪些內容沒有統一的標準也緩慢了其功能的應用。
但從大的方向上看,SIS系統的建設符合技術發展的需要和中國電力市場發展的趨勢,將給發電廠特別是大型的現代化發電廠帶來良好的經濟效益。
2 電力行業熱工自動化系統的未來發展動向及前景
隨著國家法律對環保日益嚴格的要求和計算機網絡技術的進步,未來熱工系統將圍繞 “節能增效,可持續發展”的主題,向智能化、網絡化、透明化,保護、控制、測量和數據通信一體化發展,新的測量控制原理和方法不斷得以應用,將使機組的運行操作和故障處理,象操作普通計算機一樣方便。
2.1 單元機組監控智能化是熱工自動化系統發展方向
單元機組DCS的普及應用,使得機組的監控面貌煥然一新,但是它的監控智能化程度在電力行業卻沒有多大提高。雖然許多智能化的監視、控制軟件在國內化工、冶金行業中都有較好的應用并取得效益,可在我國電力行業直到近幾年才開始有所起步。隨著技術的進步,火電廠單元機組自動化系統的智能化將是一種趨勢,因此未來數年里,實現信息智能化的儀表與軟件將會在火電廠得到發展與應用,如:
儀表智能管理軟件,將對現場智能傳感器進行在線遠程組態和參數設置、對因安裝位置和高靜壓造成的零位飄移進行遠程修正,精度自動進行標定,計算各類誤差, 并生成標定曲線和報告;自動跟蹤并記錄儀表運行過程中綜合的狀態變化,如掉電、高低限報警、取壓管路是否有堵或零位是否有飄移等。
閥門智能管理軟件將對智能化閥門進行在線組態、調試、自動標定和開度階躍測試,判斷閥門閥桿是否卡澀, 閥芯是否有磨損等,通過閥門性能狀況的全面評估,為實現預測性維護提供決策。
重要轉動設備的狀態智能管理軟件將對重要轉動設備的狀態如送風機,引風機,給水泵等,綜合采用基于可靠性的狀態監測多種技術,通過振動、油的分析以及電機診斷,快速分析(是否存在平衡不好,基礎松動, 沖擊負荷,軸承磨損)等現象和識別故障隱患, 在隱患尚未擴展之前發出報警,為停機檢修提供指導和幫助。
智能化報警軟件將對報警信號進行匯類統計、分析和預測,對機組運行趨勢和狀態作出分析、判斷,用以指導運行人員的操作;故障預測、故障診斷以及狀態維修等專用軟件,將在提高機組運行的安全性,最大限度地挖掘機組潛力中發揮作用。
單元機組監控智能化將帶來機組檢修方式的轉變,以往定期的、被動式維護將向預測性、主動式為主的維護方式過渡,檢修計劃將根據機組實際狀況安排。
2.2 過程控制優化軟件將得到進一步應用
進一步提高模擬量控制系統的調節范圍和品質指標,是火電廠熱工自動化控制技術研究的一個方向。雖然目前有關自適應、狀態預測、模糊控制及人工神經網絡等技術,在電廠控制系統優化應用的報道有不少,但據筆者了解真正運行效果好的不多。隨著電力行業競爭的加劇,安全、經濟效益方面取得明顯效果、通用性強、安裝調試方便的優化控制專用軟件(尤其是燃燒和蒸汽溫度優化、性能分析軟件、)將會在電廠得到親睞、進一步發展與應用。
目前機組的AGC均為單機方式(由調度直接把負荷指令發給投入AGC的機組)。由于電網負荷變化頻繁,使投入AGC的機組始終處于相應的變負荷狀態,鍋爐的蒸汽壓力和溫度波動幅度大,輔機、閥門、擋板等設備動作頻繁,這種方式對機組和設備的壽命都會產生一定的負面影響。隨著發電成本的提高,發電企業需從各個角度考慮如何切實降低電廠運行成本,延長機組的使用壽命。因此配置全廠負荷分配系統(即電網調度向電廠發一個全廠負荷指令,由電廠的全廠負荷分配系統,以機組的煤耗成本特性為基礎,在機組允許的變化范圍內,經濟合理地選擇安排機組的負荷或變負荷任務,使全廠發電的煤耗成本最低,降低電廠的發電成本)將是發電企業必然的要求,相信不久的將來,單機AGC方式將會向全廠負荷分配方式轉變。
SIS系統將結合生產實際進行二次開發,促進自身應用技術走向成熟,在確保火電廠安全、環保、高效益及深化信息化技術應用中發揮作用。
2.3 現場總線與DCS相互依存發展
未來一段時間里,現場總線將與DCS、PLC相互依存發展,現場總線借助于DCS和PLC平臺發展自身的應用空間,DCS和PLC則借助于現場總線完善自身的功能。
2.3.1 現場總線與DCS的關系
現場總線作為一個完整的現場總線控制系統,目前還難以迅速應用到整個電廠中,而DCS雖然是電廠目前在線運行機組的主流控制系統,但由于其檢測和執行等現場儀表信號仍采用模擬量信號,無法滿足工程師站上對現場儀表進行診斷、維護和管理的要求,限制了控制過程視野,因此DCS通過容入通信協議國際標準化的現場總線和適合現場總線連接的智能化儀表、閥門,并將自身的輸出驅動功能分離移到現場或由現場智能驅動器代替,功能簡單且相對集中的控制系統下放到采用FCS控制和處理功能的現場智能儀表中,然后由少量的幾根同軸電纜(或光纜)和緊急停爐停機控制用電纜,通過全數字化通信與控制室連接。將有助于降低電廠造價,提高自身的可靠性,拓寬各自的功能,推動各自的發展。除新建電廠將會更多的采用現場總線的智能設備外,也會成為運行多年的機組下一步的改造計劃。
2.3.2 現場總線與PLC的關系
現場總線在電廠的應用將借助于PLC,這不但因為PLC已廣泛應用于電廠輔助設備的控制,將現場總線技術和產品溶合到PLC系統中,成為PLC系統中的一部分或者成為PLC系統的延伸部分,在輔助設備的控制中將直接明顯地體現其經濟效益。還因為現場總線和PLC的制造商間關系密切,如Contr01.Net、ProfiBus等本身就是由PLC的主要生產供貨商支持開發。
由于電廠現場的環境惡劣,溫度高、灰塵多、濕度變化大,因此現場總線在電廠應用,首先要解決的是自身質量。
2.4 輔助車間(系統)集控將得到全面推廣
隨著發電廠對減員增效的要求和運行人員整體素質的提高,輔助車間(系統)通過輔控網集控將會得到進一步全面推廣。但在實施過程中,目前要解決好以下問題:
(1)輔控系統I/O點數量大(浙江寧海電廠已達到10000點),各輔助車間物理位置分散,存在遠距離通信、信號衰減和網絡干擾問題,因此監控系統主干通信網宜采用多模光纜以確保通信信號的可靠性。
(2)各輔助控制系統采用不同的控制設備,控制系統的通信接口協議不同,甚至不同的物理接口,因此須解決網絡通信協議的轉換問題,選型時應事先規定好各系統間的接口連接協議。
(3)各個輔助車間的控制系統為不同的廠商供貨,由于使用的軟件不同,其操作員站的人機界面很有可能不一致。因此選型時應注意上位機軟件,設計統一的人機界面,采用統一的風格及操作方式,以便方便各系統畫面接入BOP網絡。
輔助車間集控系統能否實現設計目標,除了自身的技術以外,很大程度上取決于輔助系統本身的自動投入情況。因此高可靠性的執行機構、動作靈活可靠的限位開關、智能化的變送器將會得到應用;
2.5 單元機組監控系統的物理配置趨向集中布置
過去一個集控室的概念,通常為一臺單元機組獨用或為二臺機組合用,電子室分成若干個小型的電子設備間,分別布置在鍋爐、汽輪機房或其它主設備附近。其優點是節省了電纜。但隨著機組容量的提高、計算機技術的發展和管理水平的深化,近幾年集控室的概念擴大,出現了全廠單元機組集中于一個控制室,單元機組的電子設備間集中,現場一般的監視信號大量采用遠程I/O柜的配置方式趨勢,如浙江省國華浙能寧海發電廠(獲國家金獎),一期工程四臺機組一個控制室集中監控,單元機組電子室集中,提高了機組運行管理水平。
2.6 APS技術應用
APS是機組級順序控制系統的代名詞。在機組啟動中,僅需按下一個啟動控制鍵,整個機組就將按照設計的先后順序、規定的時間和各控制子系統的工作情況,自動啟停過程中的相關設備,協調機爐電各系統的控制,在少量人工干預甚至完全不用人工干預的情況下,自動地完成整臺機組的啟停。但由于設備自身的可控性和可用率不滿足自動化要求,加上一些工藝和技術上還存在問題,需要深入地分析研究和改進,所以目前燃煤機組實施APS系統的還不多見。
由于APS系統的實質是電廠運行規程的程序化,其優勢在于可以大大減輕運行人員的工作強度,避免人為操作中的各種不穩定因素,縮短機組啟停時間。作為提高生產效率和機組整體自動化水平,增強在電力企業的市場競爭能力行之有效的方法,將會成為未來機組控制發展的方向之一,引導設計、控制系統廠商和電廠人員更多地去深入研究,設計和完善功能,并付緒實施。
2.7 無線測量技術應用
無線測量技術能監視和控制運行過程中發生的更多情況,獲得關鍵的工藝信息,整合進入DCS。除節省大量安裝成本以外,還將推動基本過程和自動化技術的改善。如供熱、供油和煤計量,酸堿、污水區域測量等,都可能通過無線測量技術實現遠程監控。
2.8 提高熱工自動化系統可靠性研究將深入[4]
由于熱控系統硬軟件的性能與質量、控制邏輯的完善性和合理性、保護信號的取信方式和配置、保護連鎖信號的定值和延遲時間設置,以及熱控人員的檢修和維護水平方面,都還存在一些不足之處,由此使得熱控保護系統誤動作引起機組跳閘事件還時有發生。在電力生產企業面臨安全考核風險增加和市場競爭加劇的環境下,本著電力生產“安全第一,預防為主”的方針,以及效益優先原則,從提高熱工自動化系統的可靠性著手,深入開展技術研究,是熱工自動化系統近期的一項急需進行的工作。
提高熱工自動化系統的可靠性技術研究工作,包括控制軟硬件的合理配置,采集信號的可靠性、干擾信號的抑制,控制邏輯的優化、控制系統故障應急預案的完善等。隨著機組控制可靠性要求的提高,重要控制子系統的硬件配置中,將會采用安全型控制器、安全型PLC系統或者它們的整合,保護采集信號將會更多的采用三選二判斷邏輯。獨立的測量裝置需要設計干擾信號抑制功能。此外基建機組一味以最低價中標的招標模式也應得到扭轉(最低價中標,迫使廠商通過減少配置來降低投標價,導致控制系統可靠性下降)。
2.9 火電廠機組檢修運行維護方式將改變
隨著電力市場的競爭,發電企業將趨向集約化經營和管理結構扁平化,為提高經濟效益,發電企業在多發電,以提高機組利用小時的同時,將會通過減少生產人員的配備,密切與外包檢修企業之間的聯系,讓專業檢修隊伍取替本廠檢修隊伍的方式來提高勞動生產率。因此檢修維修工作社會化將是一種趨勢。此外DCS的一體化及其向各功能領域滲透,提高電廠整體協調和信息化、自動化水平的同時,也將會使電廠原專業間及專業內的分工重新調整,比如熱工與電氣二次回路的專業劃分打通。為了降低成本,電廠不再保持大批的檢修維修人員,因此檢修維護方式也將因此而改變,比如讓生產廠家和代理公司承擔DCS和相關設備的檢修工作。
電廠機組容量的不斷增大,熱工自動化系統所依賴的測量儀表也大量增加。在現場總線和智能儀表未全面使用的情況下,這些儀表還需定期校驗。為提高測量儀表校驗工作的效率,實現測量儀表從校驗、基礎數據臺帳的建立、設備校驗計劃和日常維護工作的產生、執行、校驗、數據輸入、終結及統計分析,周期調整等的全過程自動管理代替人工管理,將是電廠儀表管理發展的趨勢,因此全自動儀表校驗裝置和自動管理軟件的需求量將會迅速增加。
3 結束語
總體來講,熱工自動化系統的發展趨勢是高速化、智能化、一體化和透明化。對故障信息的研究和充分利用是發掘熱工故障診斷與故障預測的基礎,現場總線的應用,為熱工自動化系統的進一步發展提供了不斷拓展的空間。現代控制理論的應用,將改寫熱工調節系統的指標。隨著計算機技術的進步,網絡化的保護及故障信息系統將會不斷發展,最終基于網絡大容量數據傳輸可實現,遠程專家監控診斷系統的開發應用,火電廠檢修運行維護的結構將徹底改變,屆時僅需少量人員進行機組的運行維護,更多的是通過遠程專家監控診斷系統(類似于電力調度),實現對機組的運行監控、維護和故障診斷、處理。
作者信息:
浙江省電力試驗研究院 浙江 杭州310014 孫長生
蕭山發電廠 浙江 杭州311251 馮國鋒
參考文獻:
[1] 吳永存.高度集中的輔控網在國華寧海電廠一期工程中的實現.自動化博覽2007,(3).
[2] 陳樺 Profibus DP現場總線及其在火電廠的應用.浙江電力.2006,(4).
[3] 許繼剛廠級監控信息系統(SIS)的若干設計原則,2006年全國發電廠DCS與SIS技術研討會暨熱工自動化專業會議論文集.
[4] 孫長生.汽輪機監視儀表可靠性分析與改進措施.中國電力.2007,(11).
編號:080427